Fractional global domination in graphs
نویسندگان
چکیده
Let G = (V, E) be a graph. A function g : V → [0, 1] is called a global dominating function (GDF ) of G, if for every v ∈ V, g(N [v]) = ∑ u∈N [v] g(u) ≥ 1 and g(N(v)) = ∑ u/ ∈N(v) g(u) ≥ 1. A GDF g of a graph G is called minimal (MGDF ) if for all functions f : V → [0, 1] such that f ≤ g and f(v) 6= g(v) for at least one v ∈ V , f is not a GDF . The fractional global domination number γfg(G) is defined as follows: γfg(G) = min{|g| : g is an MGDF of G} where |g| = ∑ v∈V g(v). In this paper we initiate a study of this parameter.
منابع مشابه
Domination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملBalancedness and Concavity of Fractional Domination Games
In this paper, we introduce a fractional domination game arising from fractional domination problems on graphs and focus on its balancedness and concavity. We first characterize the core of the fractional domination game and show that its core is always non-empty taking use of dual theory of linear programming. Furthermore we study concavity of this game.
متن کاملClasses of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance
This paper investigates cases where one graph parameter, upper fractional domination, is equal to three others: independence, upper domination and upper irredundance. We show that they are all equal for a large subclass, known as strongly perfect graphs, of the class of perfect graphs. They are also equal for odd cycles and upper bound graphs. However for simplicial graphs, upper irredundance m...
متن کاملMinimum fractional dominating functions and maximum fractional packing functions
The fractional analogues of domination and packing in a graph form an interesting pair of dual linear programs in that the feasible vectors for both LPs have interpretations as functions from the vertices of the graph to the unit interval; efficient (fractional) domination is accomplished when a function simultaneously solves both LPs. We investigate some structural properties of the functions ...
متن کاملFractional Roman Domination
A function f : V (G) → {0, 1, 2} is a Roman dominating function if for every vertex with f(v) = 0, there exists a vertex w ∈ N(v) with f(w) = 2. We introduce two fractional Roman domination parameters, γR ◦ f and γRf , from relaxations of two equivalent integer programming formulations of Roman domination (the former using open neighborhoods and the later using closed neighborhoods in the Roman...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010